Financial Fraud Detection using Radial Basis Network
نویسندگان
چکیده
The ubiquitous cases of abnormal transactions with intent to defraud is a global phenomenon. An architecture that enhances fraud detection using a radial basis function network was designed using a supervised data mining technique― radial basis function (RBF) network, interpolation approximation method. Several base models were thus created, and in turn used in aggregation to select the optimum model using the misclassification erro accuracy, sensitivity, specificity and receiver operating characteristics (ROC) metrics. The results shows model has a zero-tolerance for fraud with better especially in cases where there were no fraud doubtful cases were rather flagged than to allow a fraud incident to pass undetected. Expectedly, the model’s computations converge faster at 200 iterations. generic with similar characteristics with other classification methods but distinct parameters thereby minimizing the time and cost of fraud detection by adopting computationally efficient algorithm.
منابع مشابه
Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملDiscriminating Input Variables for Fraud Detection using Radial Basis Function Network
Fraud is an adaptive crime; special methods of data gathering and analysis are required to combat fraud issues as criminals often quest for dubious techniques to evade detection. Radial basis function (RBF) network, was used to build base models that identifies and detect the risk of fraud in transactions. At first, it is imperative to isolate the basic factors that are predictive of fraud occu...
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کاملKnowledge Discovering in Corporate Securities Fraud by Using Grammar Based Genetic Programming
Securities fraud is a common worldwide problem, resulting in serious negative consequences to securities market each year. Securities Regulatory Commission from various countries has also attached great importance to the detection and prevention of securities fraud activities. Securities fraud is also increasing due to the rapid expansion of securities market in China. In accomplishing the task...
متن کامل